

3

SAND-98-0074 Distribution
Unlimited Release Category UCÐ905

Printed January 1998

Developing Robotic Behavior Using a
Genetic Programming Model

R. J. Pryor
Program Management Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-1109

Abstract
This report describes the methodology for using a genetic programming model to develop
tracking behaviors for autonomous, microscale robotic vehicles. The use of such vehicles
for surveillance and detection operations has become increasingly important in defense
and humanitarian applications. Through an evolutionary process similar to that found in
nature, the genetic programming model generates a computer program that when
downloaded onto a robotic vehicleÕs on-board computer will guide the robot to
successfully accomplish its task. Simulations of multiple robots engaged in problem-
solving tasks have demonstrated cooperative behaviors. This report also discusses the
behavior model produced by genetic programming and presents some results achieved
during the study

4

Intentionally Left Blank

5

Contents

Introduction... 7

Genetic Programming Model... 8

Program Representation .. 9

Problem Definition .. 10

Definition of Functions and Terminals.. 11

Tree Generation... 14

Fitness Evaluation ... 15

Creating the Next Generation .. 16

Selection Operator.. 16

Reproduction Operator.. 17

Crossover Operator.. 17

Mutation Operator... 18

Solution Procedure... 18

Calculation Results.. 19

History of a Simulation.. 21

Summary.. 23

Future Direction .. 24

References.. 25

Figures

Figure 1. An example of a numerical tree.. 9

Figure 2. Geometry for robots, target, and walls.. 11

Figure 3. Illustration of the crossover operator.. 17

Figure 4. Solution procedure used by Paragon processors... 18

Figure 5. Distribution of the different kinds of nodes.. 20

Figure 6. Illustration of a typical behavior tree found in this study................................. 20

Figure 7. Final RMS distance by generation... 21

Figure 8. Results of a typical simulation calculation.. 22

6

Tables

Table 1. List of Functions and Terminals... 12

Table 2. Calculation Parameters ... 23

7

Developing Robotic Behavior Using a Genetic
Programming Model

Introduction

Developing tracking behaviors for autonomous, microscale robotic vehicles is
becoming an increasingly important technical challenge. These vehicles are being
considered for a variety of defense and humanitarian applications. For defense, they
could be used to conduct surveillance and to gather information. As part of humanitarian
efforts, the vehicles could be used to locate and remove land mines. These types of tasks
require that the robotic vehicles have sophisticated tracking behaviors so that they can
detect and maneuver around obstacles in their search for a source or target.

Operationally, it is envisioned that tens to hundreds of these microscale robots would
be deployed to complete a given task. Each robot would have on-board electronics,
including a small computer, ground-positioning and communication equipment, an
obstacle detector, and some source-analysis capability. To enable movement, each robot
would also have a motor, wheels, and a motor control system. Although the deployed
robots would behave autonomously, each robot would communicate information with
other robots during the task.

The types of tasks addressed in this report are limited to those necessary for locating
a source. In a typical task, robots are initially distributed randomly in a field and given
the goal of locating a source that is emitting some kind of signal (smell or sound). A
robotÕs behavior takes the form of a computer program that provides instructions to the
motor control system to direct the robot to move to the source location while navigating
around obstacles. The language used in the computer program is not important because
the program is compiled on another computer and then downloaded to the on-board
computer of each robot deployed in the task. Several methodologies have been suggested
to develop this behavior, ranging from thermodynamic analogy models to traditional
guidance models. The model used and discussed in this report is called genetic
programming. This model is different because the behavior program that was created was
not written by a programmer. Instead, the program was created by another program, as is
explained in this report.

In the sections that follow, we will describe this methodology in a logical step-wise
fashion. The goal is to provide an overview of the whole process so the reader has a good
understanding of how the problem of finding a source was solved.

8

Genetic Programming Model

Genetic programming is one of many types of genetic algorithms that use
evolutionary or adaptive processes to solve practical problems. HollandÕs pioneering
book, Adaptation in Natural and Artificial Systems, provides a general framework for such
analysis. Many books have since been written on genetic algorithms, with GoldbergÕs
Genetic Algorithms in Search, Optimization, and Machine Learning ranking among the
best. KozaÕs Genetic Programming is the most informative source on the theory of
genetic programming. This book is very well written, provides an excellent bibliography,
and fills in much of the detail not provided in this report.

So what is genetic programming? Genetic programming is a methodology. When a
computer program employs this methodology, it produces as output the source code of
another computer program. This source code can then be compiled and executed. Unlike
most computer programs, these programs are not written by a human programmer. These
programs are said to evolve in a biological setting, with rules of natural selection and
survival of the fittest playing an important part in their evolution.

Evolution occurs in discrete steps called generations. A generation is composed of a
population of individuals, each of which is a complete computer program. The size of the
population varies based on the problem; but hundreds, if not thousands, of programs are
typical. Some programs (individuals) will be very effective at doing the prescribed task
Ñsome will not. Each program is scored for applicability, and its fitness is given a
numerical score. The higher the fitness, the better the individual. The goal is to evolve
the very best program that solves the problem of interest. In this application of genetic
programming, we are trying to find the program that best guides our robots.

The solution strategy is to improve upon these programs by creating successive
generations of more fit individuals. To create the next generation of individuals, genetic
operators of selection, reproduction, crossover, and mutation are used. The purpose of
selection is to choose an individual from the current population. In general, this individual
will be better than most, but may not be the very best. Reproduction moves a selected
individual directly into the next generation. Crossover uses the selection operator twice
to select two parents from the current population that will be mated in some way to form
an offspring that will be placed in the next generation. Mutation uses the selection
operator once to choose an individual that will be mutated (changed) in some way and
then placed in the next generation. The four genetic operators are discussed in more detail
in later sections of this report.

The evolutionary calculation described above proceeds across many generations until
a single individual is found that meets a convergence criteria. This program is then saved
for use by the robots.

9

Program Representation

This section describes how the individual programs are represented within the genetic
program, which is a program that employs genetic programming. The representation
should allow complete flexibility in defining programs, yet it must also ensure that the
performance of the genetic operations is not too cumbersome. A tree-like structure best
meets these requirements.

The basic building block of a tree is called a node, with all nodes in the tree having the
same fixed structure. The first element of a node specifies the node type, which can
either be a function or a terminal. A function node performs a mathematical or boolean
operation and generally has branches (nonzero pointers) that point to other nodes. The
number of branches depends on the kind of function, e.g., add, subtract, multiply. A
terminal node normally returns a value, does not have any branches (all pointers are zero),
and terminates that section of the tree. Other elements within a node are a value position
and pointers to other nodes. Consider the sample tree shown in Figure 1 below.

Start

43

21 value

0
0

2.3

0
0

 add

1
2

0

0
0

multiply

3
4

0

0
0

value

0
0

5.9

0
0

value of x

0
0

0

0
0

Figure 1. An example of a numerical tree.

This tree has five nodes and is three levels deep. The tree is evaluated by starting at
its root, or top, and working downward until a terminal node is reached. A terminal node
returns a value which is then processed upward in the tree.

10

To evaluate the sample tree, we begin at the first node denoted by ÒStart,Ó which is a
function node, whose kind is specified as add. This kind of function node points to two
other nodes that will return values that will be summed by the add node. At pointer 1,
there is a terminal node that returns a constant value of Ô2.3.Õ At pointer 2, there is a
function node whose kind is multiply. This node points to two other nodes: one is a value
node that returns the value Ô5.9,Õ and the other is a value node that returns the value of a
global variable X. These two values will be multiplied by the multiply node, which will
return the resultant to the add node above it. The tree is equivalent to the expression:

y = 2.3 + 5.9 X

where y is the value returned by the root node at the top of the tree. The tree used in the
robotics program has many more function and terminal types than in the sample tree, and
the trees in the robotics program are also much larger.

Problem Definition

To evolve optimum tracking behaviors, we have developed a set of 90 problems that
the robots must solve. At the start of each problem, the robots are cast in arbitrary
positions onto a two-dimensional grid. Similarly, two walls and a target are cast onto this
same grid also in arbitrary positions; the walls follow the grid lines in either the x or y
directions. The goal for the robots is to learn to navigate around the walls and find the
target. Importantly, the robots have no foreknowledge of either their own positions or
the positions of the walls and the target.

Figure 2 illustrates a sample configuration at startup. The robots are represented by
bugs1, the target by a pile of cash, and the walls by heavy lines. The position of each
robot is given by a coordinate pair (x,y) which are positive integers. A robotÕs orientation
can be in one of four directions: north towards the top of the page, east towards the right,
south towards the bottom, and west towards the left. The direction impacts the robotÕs
sensing ability: a robot can only sense an obstruction if it is positioned in the direction
the robot is facing. The single target has the coordinates (Xt,Yt).

1 Sandia calls these bug looking robots ÒRobugs.Ó

11

y
x

Figure 2. Geometry for robots, target, and walls.

There are some constraints that bound the problems, however. We assume that
memory on the robotÕs on-board computer is limited, and therefore we store only four
values of data. We also assume that communication between robots is limited to the two
nearest neighbors. The data that can be communicated consist of positions and signal
strengths. And because of assumed limits in the motor control system, only one
movement instruction can be returned with each execution of the behavior program. This
instruction allows the robot to move ahead one gridpoint or to turn to a new direction.
Lastly, we assume that the signal emitted from the target is given by a one-over distance
relationship. Given these conditions and constraints, the objective is to get each robot to
the target.

Definition of Functions and Terminals

This section defines the set of functions and terminals that are used by our behavior
programs. It is important to note that our selection of particular functions and terminals
is not unique, nor is there any theory that indicates whether any one set is better than
another. The only way to determine the effectiveness of a set is to try it out and see if it
works.

12

The function and terminal set used in our robotic programming application consisted
of 34 nodes, as listed in Table 1. There were 11 functions (Index 1Ð11) and 23 terminals
(Index 12Ð34). It should be noted that all nodes return a value, even if they direct
movement of the robot.

Table 1. List of Functions and Terminals

Index Name Description
Number of
branches

1 ROOT Root node. Returns the value from below
unchanged.

1

2 ADD Returns the sum of its two branches. 2
3 SUBTRACT Returns the difference of its two branches. 2
4 MULTIPLY Returns the product of its two branches.
5 DIVIDE Returns the division of its two branches. A

test is made to ensure that a division by zero
is not possible.

2

6 IFGTEQ This is a conditional node. Branch one is
evaluated and if greater than zero, this node
returns the results of branch 2; otherwise, it
returns the result of branch 3.

3

7 ABS Returns the absolute value of its single
branch.

1

8 COMPANG Returns an integer value based on the point
location of the x and y register values on the
xy-plane. A value of 1 is returned if the
point is nearest to the positive y-axis. A
value of 2 is returned if the point is nearest
to the positive x-axis. A value of 3 is
returned if the point is nearest to the
negative x-axis. A value of 4 is returned if
the point is nearest to the negative y-axis.
The branch value is ignored.

1

9 STOREX Returns the value of its single branch but
also stores this value in the x-register of the
robotÕs local memory.

1

10 STOREY Returns the value of its single branch but
also stores this value in the y-register of the
robotÕs local memory.

1

11 INT Returns the nearest integer of the value of its 1

13

Index Name Description
Number of
branches

branch (e.g. 3.2 is converted to 3.0, and 3.6
is converted to 4.0).

12 NEIGH1X Returns the x-position of its first nearest
neighbor.

0

13 NEIGH2X Returns the x-position of its second nearest
neighbor.

0

14 NEIGH1Y Returns the y-position of its first nearest
neighbor.

0

15 NEIGH2Y Returns the y-position of its second nearest
neighbor.

0

16 POSX Returns its own x-position. 0
17 POSY Returns its own y-position. 0
18 DIRECT Returns its own direction (orientation). A

value of 1 is returned if the robot is facing
the positive y-direction. A value of 2 is
returned if the robot is facing the positive x-
direction. A value of 3 is returned if the
robot is facing the negative y-direction. A
value of 4 is returned if the robot is facing
the negative x-direction.

0

19 SIG1 Returns the signal strength received by its
first nearest neighbor.

0

20 SIG2 Returns the signal strength received by its
second nearest neighbor.

0

21 SIG Returns the signal strength that it is
receiving.

0

22 VERTWX When a robot is moving in the x-direction
and strikes a barrier, the location of an
assumed vertical barrier is stored in the local
memory of the robot. This node returns the
x-position of that barrier.

0

23 VERTWY When a robot is moving in the x-direction
and strikes a barrier, the location of an
assumed vertical barrier is stored in the local
memory of the robot. This node returns the
y-position of that barrier.

0

24 HORZWX When a robot is moving in the y-direction
and strikes a barrier, the location of an
assumed horizontal barrier is stored in the

0

14

Index Name Description
Number of
branches

local memory of the robot. This node
returns the x-position of that barrier.

25 HORZWY When a robot is moving in the y-direction
and strikes a barrier, the location of an
assumed horizontal barrier is stored in the
local memory of the robot. This node
returns the y-position of that barrier.

0

26 RECALLX Returns the value stored in the x-register of
the robotÕs local memory.

0

27 RECALLY Returns the value stored in the y-register of
the robotÕs local memory.

0

28 TURNN Directs the robot to turn north (positive y-
direction). Returns a value of 1.0.

0

29 TURNE Directs the robot to turn east (positive x-
direction). Returns a value of 1.0.

0

30 TURNS Directs the robot to turn south (negative y-
direction). Returns a value of 1.0.

0

31 TURNW Directs the robot to turn west (negative x-
direction). Returns a value of 1.0.

0

32 TURNRGT Directs the robot to turn right by 90 degrees.
Returns a value of 1.0.

0

33 MOVE Directs the robot to move one space point in
the direction it is facing. If successful, the
node returns a value of 1.0. If not
successful, a barrier is assumed and the node
returns a value of -1.0 and the barrier
position is stored in local memory (see
above).

0

34 VALUE Returns the value stored in the behavior tree. 0

Tree Generation

From previous discussion you may recall that the genetic operators are used to create
the next generation of behavior programs (trees) from the current generation, but you may
be wondering how the first generation was created. The answer is that the first generation
of trees is created randomly. To generate a tree, a recursive function is called that needs
only to know the current level or position in the tree. We define level 1 as the top of the

15

tree or root. Level 2 is the level just below the root. Level 3 and the remaining levels
follow.

The level number is initially set to zero. When the recursive function is called, it first
increments this level number by one and then checks on its value. If the level number is
equal to one, it inserts a ROOT node, defines a single new node, sets a pointer to it, and
then calls itself pointing to the new node. On all other levels, the recursive function
selects randomly from the functions and terminals, defines the appropriate number of
new nodes and pointers, and then calls itself for every new node.

Two parameters control the size, or number of levels, of the tree. The parameter
MINTREESIZE specifies the minimum number of levels a tree may have, while the
parameter MAXTREESIZE specifies the maximum number of levels of a tree. These
parameters are used in the following way. If the level number is less than
MINTREESIZE, the recursive function will only select from the function node kinds (e.g.,
add, subtract). This ensures that at least one more level will be added. If the level number
is equal to MAXTREESIZE, the recursive function will only select from the terminal
node kinds. This ensures that no more levels are added to this part of the tree because
terminal nodes do not have any branches. For all other level values, a random selection is
made.

Fitness Evaluation

The most important aspect of the genetic programming methodology is the evaluation
of tree fitness. Fitness provides the selection pressure that drives the programs to the
desired behavior. The fitness of each tree in a population is evaluated separately. An
evaluation involves testing a tree against a set of problems. After all problems have been
run, a fitness score for the tree is determined.

A problem description consists of an initial configuration of robots, barriers, and
target position. We select the configurations randomly using a random generator. Once
these initial conditions are specified, a simulation calculation is performed. Robots move
step-wise according to instructions provided by the behavior program. Each robot gets a
chance to move before the next step is started. There are a finite number of steps in a
simulation, and during each step a robot is permitted only a single movement (turn or
move ahead). After the prescribed number of steps have elapsed, the positions of the
robots are observed and the squared distance from each robot to the target is tallied. Once
all problems are completed, a mean squared distance is computed and the fitness is
determined from the expression below:

fitness = 1000.0 / 1.0 + msd

16

where msd is the mean squared distance. To prevent trees from becoming exceedingly
large, we use a penalty function to reduce the fitness by a slight amount depending on the
number of nodes in the tree. This penalty function is of the form:

penalty = a (number of nodes)

where a is a small constant.

 Creating the Next Generation

The operators of reproduction, crossover, and mutation are used to create the next
generation of individuals. Each operator works independently of the other operators, and
the usage of each operator is determined by its assigned probabilities. The reproduction,
crossover, and mutation operators use the selection operator to determine the individuals
in the current population that will be acted upon.

The population size, POPSIZE, of each generation remains the same. To create the
next generation, a loop over the necessary individuals is started. Within the loop, a
random number is drawn and three probabilities are compared. The probability
PROBREP determines the percentage of times within the loop that reproduction is used.
Likewise, PROBCR and PROBMUT determine the percentage of times that crossover
and mutation are used, respectively. The sum of the three probabilities is 1.0. From the
random number and the three probabilities, an operator is selected that then creates one
new individual in the next generation. When the required number of individuals is created,
the loop is terminated.

Selection Operator

The selection operator is used to identify individuals in the current population for
reproduction, crossover, or mutation operations. A tournament algorithm is used2, which
is easy to implement and is relatively fast. The algorithm works in the following way.
NTOUR individuals are randomly selected from the population. The fitness values of
these individuals are compared, and the individual with the highest fitness is the winner of
the tournament; that is, the one selected. If two individuals are needed, as in the case of
crossover, then the tournament is repeated. Note that the parameter NTOUR determines
the distribution of individuals selected, and thus increasing its value moves distribution
toward more elite individuals in the population. For example, if the value of NTOUR is
equal to the population size, then only the most fit individual will be selected. Reducing
the value of NTOUR allows more individuals to take part in forming the next generation

2 Several different algorithms were considered, such as roulette wheel selection, but this worked well and it
was fast.

17

Reproduction Operator

The reproduction operator is the simplest of the operators used. Reproduction makes
an exact copy of a selected individual in the current generation and places it into the next
generation. The fitness of this individual is saved so that the fitness value will not need to
be recomputed.

Crossover Operator

The crossover operator is slightly more complicated than the reproduction operator.
Crossover is done in three steps. First, the selection operator is called twice to select two
individuals from the current population. Next, for each selected individual, a cutpoint is
randomly selected among the nodes of its tree. Finally, the new tree is created by
removing the cutpoint node and all nodes below it from the first tree and replacing them
with the cutpoint node and all nodes below it from the second tree. Figure 3 illustrates
this last step.

A1

A2

A3 A4

A5

A8 A9

A6

A7

cutpoint

Tree 1

B1

B2

B3 B4

B6 B7B5

B8 B9

cutpoint

Tree 2

A1

A2

A3 A4

A5 B2

B3 B4

B6 B7B5

B8 B9

New Tree

Figure 3. Illustration of the crossover operator.

18

The new tree, which was created by splicing together two trees in the current
population, is then placed in the next generation.

Mutation Operator

The mutation operator removes part of an existing tree and replaces it with a
randomly generated new part, using the same recursive function that created the first
generation. A tree is selected from the current population and a cutpoint node is
randomly selected among its nodes. That node and all beneath it are then removed.
Subsequently, the recursive function is called at the cutpoint location to generate a new
part of the tree. The modified tree is then placed in the next generation.

Solution Procedure

Figure 4 illustrates the basic solution procedure. The recursive function discussed
previously creates the first generation. The fitness of each individual in the population is
then determined followed by the initiation of a loop over generations. Within the
generation loop, the next generation is created and the fitness of each individual within
that generation is calculated. A test is then made to determine whether any individual
meets a convergence criteria. If one is found, the loop is terminated and the calculation
ended. If no individual is found, the calculation continues.

Done

Initialize first generation

Selection

Crossover, Mutation, Reproduction

Calculate Fitness

Problem converged ?

yes

no

L
o

o
p

 o
ver o

ffsp
rin

g
s

C
re

at
e

n
ex

t
g

en
er

at
io

n

Calculate Fitness

Figure 4. Solution procedure used by Paragon processors.

19

The calculations were done on the Intel massively parallel Paragon computer at Sandia
National Laboratories. Running on the supercomputer required some slight modifications
in the basic procedure to allow sharing of the ÒbestÓ tree among processors. The number
of processors allocated to a calculation was either 100 or 1800. A processor is identified
by its number, whose range is 0 to the number of processors allocated minus 1. In our
implementation, each processor had the same genetic program and ran independently of
the other processors. At the end of each generation, each processor would determine the
best tree in its population and send it to processor 0 where the globally best tree would
be determined. Processor 0 would then broadcast the globally best tree to all processors.
Accordingly, each processor would then decide if the globally best tree would be
employed in creating the next generation, using an algorithm that depended on the
generation number and its processor number. If a processor decided to use the globally
best tree, it would do so only through mutation. That is, when mutation was selected, the
processor would not use the selection operator to select an individual from the current
population; rather, it would use the globally best tree.

The reason for not using the globally best tree all the time is to maintain diversity in
the entire population. The convergence rate is proportional to a measure of the diversity.
If the globally best tree was used by all processors at each generation, it would not be
long before all of the trees would look much the same and the rate of improvement would
be reduced.

Processor 0 performs two additional tasks. It writes the a binary representation of
the globally best tree to disk for restart purposes, and it also writes an equivalent C
source-code version that can be used in a simulator and in the actual robot.

Calculation Results

The calculation of the behavior was done on the Paragon in a series of four runs. Each
of the first two runs used 100 processors and lasted 1 hour. Each of the last two runs
used 1800 processors and lasted 6 hours. The globally best tree was then analyzed using
a simulator that was similar to the one used in the genetic program to calculate fitness.

The final average root mean squared (RMS) distance of each robot to the target was
found to be equal to about 2.2 for the 90 problems that were analyzed by the genetic
program. The fitness for this tree was about 300 after the penalty term was subtracted.
The tree had 484 nodes and was 24 levels deep. The distribution of node kinds is given in
FigureÊ5, with the index numbers corresponding to those used in the table of functions and
terminals presented previously. Note that the subtract node was used more often than
others. We also found that the use of node kinds was related to information exchange

20

between the robots. FigureÊ6 illustrates a tree that was similar to the one generated in this
study.

0

25

50

75

100

125

F
re

qu
en

cy

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Node Index

subtract

move

ifgteq
recall x-reg

Tree Size = 484 nodes
Tree Depth = 24 levels

Figure 5. Distribution of the different kinds of nodes.

Figure 6. Illustration of a typical behavior tree found in this study.

We also observed that the final RMS distance to the target would abruptly decrease
during the calculation. This phenomenon was attributed to the discovery of a new way to

21

find the target. We ran several additional calculations and observed the same
phenomenon, as illustrated in Figure 7.

2.00

3.00

4.00

5.00

6.00

7.00

F
in

al
 R

M
S

 D
is

ta
nc

e
to

 T
ar

ge
t

0 50 100 150

Generation Number

Genetic Programming
Calculation Results

Discovery

Figure 7. Final RMS distance by generation.

History of a Simulation

To highlight characteristics of the implementation, we have included a brief history of
one simulation. In this simulation we used seven robots, one target, and two barriers.
The initial positions were determined randomly. Figure 8 shows this history at 8
different steps during the transient. The squares in the figure are the robots, with the
mark on each square denoting the direction that the robot is facing. The circle is the
target, and the lines are barriers.

22

Step 0 Step 15

Step 35 Step 61

Step 80 Step 101

Step 125 Step 150

Figure 8. Results of a typical simulation calculation.

23

In the sample simulation, all robots found the target and none got trapped behind
walls. We ran other cases where one or two robots did get trapped and therefore did not
find the target. In some of those cases it appeared as though some of the robots helped
the one that was trapped. We could not explain this cooperative behavior by studying
the tree, which was too complex to analyze because of its size.

Table 2 lists the parameters used in the calculations of the sample simulation.

Table 2. Calculation Parameters

Parameter Description Value
FLDDIM1,
FLDDIM2

Dimensions (width, length) of the field used in the
simulations.

(100, 100)

MINTREESIZE Minimum number of tree levels. 8
MAXTREESIZE Maximum number of tree levels. 25
ALPHA Penalty function constant, a. 1.0e-6

MAXSTEPS Number of simulation steps performed per
problem.

100

PROBSIZE Number of problems run for fitness calculation. 90
POPSIZE Number of trees on each processor of Paragon. 100
BUGSIZE Number of robots used in simulation. 7
WALLSIZE Number of walls used in simulation. 2
NTOUR Number of individuals taking part in tournament

selection.
4

PROBREP Reproduction probability. 0.1
PROBCR Crossover probability. 0.8
PROBMUT Mutation probability. 0.1
NODEX Number of Paragon processors - range (min, max). (100, 1800)

Summary

The genetic programming model successfully produced a behavior for a collection of
tracking robots. The computations were performed on SandiaÕs massively parallel
Paragon computer at reasonable computing costs. Simulations confirmed that at least one
robot located the target for a variety of starting conditions.

We have found that genetic programming models offer two advantages over more
traditional methods for determining robotic behavior. The first, and perhaps most
important, benefit is that new and sometimes novel solutions to problems are foundÑ

24

ones that we might not have considered. This occurs because we do not constrain the
solution. In genetic programming, we provide the tools (functions and terminals) and a
goal to reach. The genetic program determines the best way to solve the problem. The
second benefit is that the solutions appear to be more robust since many problem
conditions and variations are investigated in the solution process.

Future Direction

The work on using genetic programming for robotic behavior is far from completion.
More complex situations are likely to be encountered as robots enter actual field
operations. Decisions beyond movement, such as concealment and operations in adverse
conditions, must be considered.

We are also using this technology in war-gaming applications. Recently, we
completed a simulation of two soldiers attacking a gun tower, where a genetic program
was used to evolve successful strategies for the attacking soldiers. This work is
continuing.

25

 References

Holland, John H., Adaptation in Natural and Artificial Systems, University of Michigan
Press, 1975.

Goldberg, David E., Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley, 1989.

Koza, John R., Genetic Programming, The MIT Press, 1992.

	Abstract
	Contents
	Introduction
	Genetic Programming Model
	Program Representation
	Problem Definition
	Definition of Functions and Terminals
	Tree Generation
	Fitness Evaluation
	Creating the Next Generation
	Selection Operator
	Reproduction Operator
	Crossover Operator
	Mutation Operator

	Solution Procedure
	Calculation Results
	History of a Simulation

	Summary
	Future Direction
	References

